Geographic variation of Hyla rubicundula and Hyla anataliasiasi, with the description of a new species (Anura, Hylidae)

Marcelo Felgueiras Napoli \& Ulisses Caramaschi

Departamento de Vertebrados, Museu Nacional do Rto de Janciro, Quinta da Boa Vista, 20940-040, Rıo de Janeíro, RJ, Brasıl

E-mal: napole(3acd ufn br

Abstract

Analyses of intra- and interpopulation variation of the external morphology of Hyla rubicundula Reinhardt \& Lütken, 1862 and Hyla anatalixsiasi Bokermann, 1972 indicate that four morphospecies are represented. Hyla rubicundula comprises three of the four morphospecies. Its northern morphospecies is described as a new species characterized by an immaculate dorsum and a pointed snout. Redescriptions of H, rubicundula and H. anataliasiasi are provided.

Introd UCTION

The species currently included in the H_{y} la rubicundula group share the following characteristics' small size (SVL: males $16.0-25.5 \mathrm{~mm}$. females $16.6-25.9 \mathrm{~mm}$), thughs immaculate, dorsum consistently green in life, and dorsal surfaces pink to violet in preservative. This group occurs in northern, central, northeastern and southeastern Brazl (FROST, 1985), in open habitats, mainly in "cerrado" formations, but also in transitional areas between cerrado and rainforests.

According to Bokermann (1968) and Frost (1985), the Hyla rubicundula group is composed of Hy la rubirudulula Remhardt \& Lutken, 1862, Hylu triaamata Bokermann, 1965 and Hyla analuhasiasi Bokermann, 1972. Hyfa elongata A Lutz, 1925 was synonymized with H rubrundula by Boxfrmann (1968) but treated as a vald species by Haddad et al (1988); the latter authors compared vocalizatuons of specmens from Serra da Canastra, Mmas Gerass, with the vocalizations of topotypic populations of H rublu undula described by Cardoso \& Viflelard (1985), and considered H rubicuibdula and H. elongua as distunct species However, our examination of the external morphology of the specimens from Secra da Canastra revealed that they must be assoclated to the H rratamata complex, and were wrongly identricd as H elongata by Hadbad et al. (1988). Thus, the synonymization of H clongrafu with H rubreundula proposed by Bokermann (1968) is valid

Hyla tritaenata, originally meluded in the H. rubicundula group, is not treated in this paper because it has (1) a distinctive dorsal pattern (a single sacral stripe, instead of two in the other species) and (2) different habitat preferences: this species is found in springs and streams, whereas the rest of the group inhabits permanent or temporary ponds (BOKERMANN, 1965. Jim. 1980). Also, (3) the large intra- and interpopulation variations of H trataeniata suggest a species complex that must be analyzed separately.

The purposes of this paper are (1) to study the degree of intra- and interpopulation variation in H. rubicunduia and H anataliasiast, and (2) to describe a new species of the H rubicundula species group.

Material and methods

Specimens used for description or examined for comparisons were previously deposited in the collections of the Museu Nacional, Rio de Janerro (MNRJ), of the Museu de Zoologia, Unversidade de São Paulo (MZUSP), of the Naturhistorisches Museums, Vienna (NMW), of the Werner C A. Bokermann collection, dcposited in the Museu de Zoologia, Universsdade de São Paulo, SP, Brazil (WCAB), of the Kobenhavns Universitet, Zoologisk Museum, Copenhagen (ZMUC), and of the Museu de Historia Natural, Universidade Estadual de Campinas (ZUEC). The analysis of the material was simlar to that used by Vanzolini (1970) and HFYER (1984). Intially, large samples from each locality were analyzed ("basic samples") to determine the patterns of vanation within samples. Specimens were sorted into morphospecies (i e, categories thought to represent different species). Subsequently, samples from poorly represented localises were analyzed ("small samples"), and these specmens, when possible, were associated to a morphospecies by similar morphology and proximity among localities. The last step of the analysis corresponds to a careful examination of the patterns of variation among morphospecies.

Only aduli males were examined because females and juvenies were rare in the samples. We developed a senes of standards for the general dorsal pattern, mid-dorsal pin stripe, dorsolateral stripes, lateral limits of dorsum, upper surface of tibia, loreal and canthal stripes, and dorsal head shape (fig. 1-3). Nane measurements (mm) were taken following Dulluman (1970) SVL (snout-vent length), HL (head length), HW (head with), ED (eye diameter), UEW (upper eyelid width), IOD (interorbital distance), IND (internarial distance), TD (tympanum diameter) and TL (tibia length) Four mcasurements were made following HeYer et al. (1990): UAR (upper arm), FAR (forearm), HAL (hand length) and THL (th.ugh length) Five other measurements were END (eye to nostril distance straight lue distance between anterior corner of orbital opening and postertor margin of external nare). NSD (nostril to tip of snout distance: straight line distance between anterior corner of nostril to tip of snout). FL (foot length distance from heel to up of fourth toe), 3FD (third finger disk diameter, greatest horizontal distance between outer edges of third finger disk) and 4TD (fourth toe disk diameter greatest horizontal distance between outer edges of fourth toe disk). Webbing formula notations followed Savage \& Heyer (1967).

Discrumnant function analyses compared inter- and intra-morphospecies vanation (Marcus, 1990) without remowng the size effect in the groups (Reis et al., 1990), and groups

Fig 1 Siandards for dorsal and m.d-dorsal pinstripe patterns. Pattems A 3 (dorsum mamaculate). A 7 cone to few dots distributed irregularly) and B 3 (absence of mad-dorsal pin stripej are not figured

Fig. 2 - Standards for dorsolateral stripes Cl-C2, thin and regular; C3-C4, theck and uregular; C5, vestıgral; C6, absent, is not figured, C7, thick and well marked. Lateral limits of dorsum- D1, above the tympanum: D2, under the lower border of tympdnum, Upper surface of tibia patterns. E1, white stripe over dark stripe; E2, white strupe absent. E3. white and dark stripes vestigial or abscnt, E4, presence of a mid-dorsal pin stripe. Loreal and canthal stripes patterns F1, thin white stripe over dark stripe; F2-F3, thick clear band over dark stripe.
were defined a prori. Eigenvectors and associated eigenvalues were obtained from a variancecovariance matrix, and the loadings were the correlations between the onginal variables and the scores. We used t-tests to compare mean valucs from different measurement variables of the same species. For character analyses, we used the chi-square test (t^{2}) to compare patterns among samples of the same morphospecies (Sokal \& Rohlf, 1981)

Vocalizations were recorded by Rogeno P. Bastos with a Uher Report Montor and a Uher M 518 A mucrophone at a tape speed of $19 \mathrm{~cm} / \mathrm{s}$. Tapes were analyzed on a Macintosh Classic coupled to a MacRecord Sound System 2.0.5

Fig 3 Standards for the dorsal head shape patterns (G1-G7), and projection of centrods resulted from the multople discromant functon analysis for 18 morphometric characters of the combined samples of morphospecies $\mathrm{RU}, \mathrm{PRU}, \mathrm{CBO}$ and ANA , in the first threecanomeal axes. A mmmum spanning tree connects the closest means, and the Mahalanobis distance is given for each link of the tree, this procedure corrects the distortion caused by the three-dimensional projection

Results and discussion

Morphospecies

The four morphospecies were named and coded as follows (code, code name, number of specimens analyzed, localities):

RU, Hyla rubicundula, $n=144$. Bahia: Barreiras and Jupaguá. Minas Gerais: Alfenas, Andrequcé, Arinos, Barão de Cocais, Belo Horizonte, Buritis, Buritizeiro, Esmeraldas, Jaboticatubas, Januária, Lagoa Formosa, Lagoa Santa, Manga, Pırapora, Três Marias, Unai and Vespasiano. Golás: Cristalina.

PRU, Hyla "pseudorubicundula", $n=54$ Minas Gerais: Uberlàndià. Golás. Aragarças, Cavalcante, Goiânia, laclara, Monte Alegre de Golás, Nova Roma, Porangatu, Santa Rita do Araguaıa, São Domingos and escarpa da Serra Dourada. Pıaứ: Uruçui.

CBO, "Cachimbo", $n=15$. ParR: Cachimbo.
ANA, Hyla anatahasiast, $n=85$. Mato Grosso Posto Leonardo and Posto Diauarum.

COMPARISONS AMONG MORPHOSPECIES

Results from the analysis of the seven coloration patterns indicate two categorics of characters (tab. 1). In the first category, frequencies of character states differed among morphospecies, but no states (e.g., mid-dorsal pin stripe or loreal and canthal stripes patterns) were diagnostic. The second category was defined by states unique to certan morphospecies, and specimens having such unique states were easily diagnosed from the other morphospecies (e.g, any specimen that presented pattern A1I for general dorsal pattern was automatically assigned to morphospectes ANA). General dorsal patterns, dorsolateral stripes, lateral limits of dorsum, upper surface of tibia, and dorsal head shape patterns belonged to this category. Taken in combination, pattern characteristics distingushed most but not all ndividuals of the four morphospecies: that is, a specimen that had only character states common to all morphospecies was not assigned to one of them.

Measurement variables

Multiple discrimmant functoon analysis was used to analyze morphological variztion among the four morphospecies. We found three significant axes (Witks $\wedge=0.0753, F=16.86$. df - 54 and 659 3, Bonferroni corrected, $P<001$) (fig. 3) Morphospecies ANA and CBO were casly discrimunated from morphospecies RU and PRU, but the last two were only partally discrimmated from each other ((lab. 2). The standardized discrminant function coefficients and the loadings are presented in tab. 3.

Table 1. - Distributions and percentage (in parentheses) of patterns (fig. 1-3) among the four morphospecies. A blank indicates no specimen had that state; a zero indicates that at least one specimen with that state was examined, but the rate of occurrence per 100 specimens rounds off to zero. $n=$ number of specimens for which data are avalable.

General dorsal patterns													
Morphospecies	n	A1	A2	A. 3	A4	A5	A6	A7		A8	A9	A10	A11
RU	132	53 (40)	1 (7)	15 (11)	${ }^{17}$ (12)	4(3)	6 (4)	2 (1)		9 (6)	15 (11)	1 (0)	
PRU	48	16 (33)	4 (8)	1 (25)	2 (4)	2 (4)	1 (2)	1 (2)		2 (4)	7 (14)	1 (2)	
CBO	15			5 (33)				11 (66)					
ANA	81		1 (1)	45 (55)			11 (13)	3) 5 (6)					19 (23)
Mid-dorsal pin stripe					Dorsolateraj stripes								
Morphospecyes	n	B1	B2	B3	n	Cl	C2	C3		C4	C5	C6	C7
RU	144	64 (43)	32 (21)	48 (33)	132	83 (62)	49 (37)						
R2U	48	2 (4)	10 (20)	$36(75)$	56 46	S(10)	$8(17)$	1502		10(21)	3 (6)	$s(10)$	
CBO	15			15 (100)	0) 15		14 (93)) 1 (6)					
ANA	82	36 (43)	20 (22)	20 (31)) 81	15 (18)	S0(61)				10(12)	1 (1)	5 (6)
Lateral limits of dorsum				Upper surface of tibla					Loreal and canthal stripes				
Morphospecies	n	DI	D2	n	E1	E2	E3	E4	n	F1	F2	F3	F4
RU	134	134 (300)		134	${ }^{91}(67) 3$	37 (26) 6	6 (3)		140	119 (84)	(4) 12 (7)	6 (4)	3 (2)
PRU	48	22 (42)	$26(54)$	45	12 (26)	27 (60) 6	6 (t3)		46	4 (3)	22 (4)	14 (30)	6 (13)
CBO	15	15 (100)		15		10 (66) 5	$5(3)$		15		9 (60)	6 (40)	
ANA	82	$82(100)$		82	3 (3)	13	13(15) 66	66 (80)	82	40 (46)			38 (46)
Dorsal head shape													
Morphospecies	n	Gl	G2		G3	G4	G5		6	G7		88	G9
RU	140	9 (6)	40 (28)		8 (41)	9 (6)	11 (7)		(7)	$2(1)$			
PRU	47		5 (10)		2 (4)	1 (2)	12)			$38(80$			
CBO	15											(100)	
ANA	82												82 (100)

Variation within morphospecies RU

The analysis exammed the samples from Minas Gerais and Bahia. These samples were grouped into four arcas equidistantly distributed along a transect (fig. 4A) linking Barrerras (Bahaa) and Alfenas (Minas Gerais) that represented, respectively, the distribution limits north and south for morphospecies RU. Distributions of pattern states were determined for each of the four areas, and the observed occurrences were tested against expected occurrences (based on frequency of distribution for entire sample RU) with a chi-square test. Some character states were combined to avord volating minmum cell-size requrements for ℓ^{2} analysis (app. 1; Sokal \& Rohlf, 1981).

Three directional clines were observed (fig 4A). The first drection (shading "A") denoted a cline for general dorsal pattern and upper surface of tibia pattern (fig 5A). These specmens showed an increase in dorsal melanization and a decrease of the dorsolateral white stripe on the edges of tibia from southeastern to northeastern Minas Gerals. The second direction (shading "B") denoted a cline for dorsal head shape (fig. 5A) nnvolving areas I. II and IV We did not consider area III because it is not representative (the two geographical samples in the direction " B " included only two specimens and nether were well preserved). thus, there is a hiatus between areas II and IV. The thurd cline followed the transect line. It was characterized by a decrease in occurrence of a mid-dorsal pin stripe (fig. 5A) from south to north (i e. from area I/II to IV) The patterns of loreal and canthal stripes and dorsolateral stripes did not show statustically significant level variation.

The similanty among these areas depended on each particular character, and there was no specific pattern discriminatung an area from the others. However, differentiation may be computed in the degree of occurrence for a certain state. The similarity and dissimularity among areas shown by each character obtamed from the λ^{2} test was as follows generai dorsal pattern $(I=I V ; I I=I I I)$, md-dorsal pin stripe pattern $(I=I I ; I I=I V)$, dorsolateral stripes pattern ($I=I I=I I I$; IV), upper surface of tibia pattern $(I=I I=I V ; I I I)$, loreal and canthal stripes pattern ($I=I V=I I=I I I$), and dorsal head shape $(I=I I I ; I I=I V)$.

Mfasurement variables

Multiple discriminant function analysis was used to analyze morphological variation among nine samples previously combined. To increase the number of specimens analyzed, samples from Très Marıas and Andrequicé, Pirapora and Lagoa Formosa, and Vespasiano and Bardo de Cocass were combined because of ther proximity Three significant canonical axes (Wilks) $-0.02385, F-3274, d f-144$ and 7126 ; Bonferrom corrected, $P<0.0006$) resultung from this analysis represented 79°, of the total variation The propection of the individual scores in the first three axes (not figured) did not support additional discrumanation and made a mosaic of superpositions among the geographic samples This result may be interpreted as intraspecific vartation. All samples were considered to belong to H rubicumdula.

Varlation within morphospectes PRU

This analysis examıned samples from Golas. These were grouped into three areas (fig. 4B) with the same criteria as for morphospecies RU, but the small number of specimens in each sample, manly in areas I and III, made the use of the χ^{2} test (pattern analysis) impossible in most comparisons. The discriminant function analysis used to analyze morphological variation (measurement variables) among five prevously combined samples furnished only one significant canonical vector (Bonferroni corrected) without any relevant discrimnation result.

Frogs from areas I and II were similar to each other in the majority of characters but were different from those from area III. A cline, characterized by the stranght Ine between Santa Rita do Araguaia and Săo Domingos (fig. 4B), was observed for (I) dorsolateral stripes (a progressive disappearance of the dorsolateral white stripe from northern to southern Goiás) and (2) dorsal head shape patterns fa decrease of diversity of dorsal head shape patterns from northern to southern Goias; fig. 5B) The smilarity among areas shown for each character, obtained for certann characters by the κ^{2} test, is as follows: general dorsal pattern (I = II; III), mid-dorsal pin stripe pattern $(I=I I ;$ III $)$, dorsolateral stripes pattern $(I=I I ; I I)$, lateral limits of dorsum pattern ($I=I I$; III), upper surface of tibia pattern $(I=I I ; I I)$, loreal and canthal stripes pattern (I, II, III) and dorsal head shape ($[=I I ;[I]$). Differences between areas I and II were mainly by degree of occurrence of some states, rather than kind; area III differed from the others by degree and kind.

Taxonomic conclusions

Morphospecies RU and PRU were not well discriminated from each other. Pattern standards denoted variation in degree between these morphospecies but not in kind. Such vantion occurred for all character similanty between area III of Minas Gerats (fig. 4A) and area 1 of Gotas (fig. 4B) The discrmmation obtaned by the discriminant function analysis Was not robust (tab 2) Also, the comparisons between advertisement calls of topotypic Hyla rubucundula (Cardoso \& Vieillard, 1985) (motphospecies RU) and a sample from Silanma, Goıás (morphospecies PRU, see Vocalızation in Hyla rubicundula redescription below) fatled to provide additional support for discrimination.

The distribution of morphospecies PRU in Goiás (central Brazil) deserves consideration The Serrd do Caiapó, Serra Dourada. Serra dos Pırineus and heterogeneous vegetation separate the examined population samples in three areas in northern, southern and eastern Golis (Goranta). The vegctation (Anonymols, 1989) is manly represented by seasonal semi-deciduous forest, seasonal deciduous forest and transinonal areas ("ecological stress areas") Because these frogs never cross tropical rainforests, the discontinuty of cerrado formatron in central Brazil, where different hinds of relief and vegetation are found, may reduce or obstruct genetic flow among local populations and favor the formation of heterogeneous morphotypes.

The "Esplgào Mestre" (scarps, 1200-3000 m), with tropicai ranforests, between Golas and Baha, as well as the sem-deciduous seasonal forest of southem Goas (Anonymols, 1989) adjacent to Minas Geras, may function as ecolegical barriers between popufations of

Fig. 4 Geographic distribution of (circles) Hyla rubicumdula, (squares) H anatahasiast and (stars) H cachamio. Each plot may represent more than one sample. Closed symbols show the localittes of exammed samples, and open symbols the localities of samples of H anatahasasi not examined in this paper (A) Distribution of morphospectes RU in Minas Gerais and Baha A transect line links Barreiras and Alfends, the distribution lirmits north and south for RU. Shading areas A and B show directions of morphological vartation explained in text tsee Vartation withth morpinospecier Ref) (B) Distribution of morphospecies PRL in Gokas. A transect hine fimks Sảo Domingos and Santa Rila do Araguala, the distribution limits north and south for PRL For detaled explaration of each character mvolved, see Varation nuthm morphospentes PRU. BA. Bahna, ES, Espinto Santo, GO, Golds; MG, Mtrids Gerals, MS, Mato Grosso do Sul, MT, Maıo Grosso, SP, Sado Paulo, TO, Tocantins. Roman numerals indicate areas equdistantly distributed throughout the transect

RU and PRU which occur only in cerrado habitats. The greatest morphological similarity between these two morphospecies occurs right in the cerrado corndors that allow interactions between populations of RU in Minas Gerais and Baha and PRU in Goras. We conclude that both morphospecies RU and PRU belong to Hy la rubrcundula.

Fig. 5 Frequency (in percentage) of patterns obtaned in morphospecies (A) RU and (B) PRU for areas I-IV (fig 4A) and areas I-III (fig. 4B) respectively Patterns were combined (for criterta, see app, 1) in order not to volate minmum cell-size requirements for chi-square analysts

Morphospectes ANA (Hyla anatalastasi) and CBO are well discrimmated from each other and from the other two morphospecies (H) /a rubicundula) by the analyses of external morphology and morphometrics. Morphospecies CBO is restricted to an isolated savanna which is separated from cerrado by 200 km of tropical rainforest and was probably connected to the cerrado during periods of dreer climate (Pleistocene; Prance. 1996). As we stated, these frogs never cross tropical rainforests, thus, this geographic isolation obstructs genetic flow and

Table 2. - Classification table for specimens based on the results of the discriminant function analysis for the combined samples RU, PRU, CBO, and ANA; Results presented grapheally in fig. 5. $n=$ number of specimens.

Morphospecies	n	RU	PRU	CBO	ANA
RU	124	$96(77.42 \%)$	$23(18.55 \%)$	$4(323 \%)$	$1(0.81 \%)$
PRU	41	$5(1220 \%)$	$33(80.49 \%)$	$3(7.32 \%)$	0
CBO	12	0	0	$12(100 \%)$	0
ANA	65	0	0	0	$65(100 \%)$

suggests a speciation mechanism. Morphospectes CBO and ANA may be considered full species, and we assigned the following morphospecies to these species: morphospecies RU and PRU to Hyla rubscundula Reinhardt \& Lütken, 1862, morphospecies ANA to Hyla anataliasiast Bokermann, 1972; and morphospecies CBO to a new species described below.

Species descriptions

Hyla cachimbo sp. noy.
(fig. 6A, 7A, 8A)
Holotype. MZUSP 21912, adult male, collected at Cachumbo (about $09^{\circ} 21^{\prime} \mathrm{S}, 54^{\circ} 57^{\prime} \mathrm{W}$), Pará, Brazll, between 200 and $400 \mathrm{~m}, 18$ October - 9 November 1955, by E. DENTE, F. S Pereira and W. Bokermann

Paratopotypes. - Thirteen adult males (MNRJ 17298-17299; MZUSP 21911, 21913-21918, 21920-21926) and an adult female (MZUSP 21910), collected with the holotype.

Diagnosis. - Species characterized by the following combination of tratts. (1) small size (SVL males $198-21.0 \mathrm{~mm}$; female 24.2 mm); (2) lateral limits of dorsum above the tympanum (pattern D2, fig. 2); (3) head as long as wide, width contamed about 3.1 times in the snout-vent length; and (4) dorsal snout profile acuminate (fig. 6A, 7A)

No specimen of H. cachimbo has two divergent dorsal brown stripes from the anterior section of head to near the middle of the body nor two parallel sacral stripes, but many individuals of H rubscundula have such a pattern (patterns A1, A2, A4-A6 and A8-10, fig. I) No specimen of H cachimbo has a mid-dorsal pin stripe, but many mdividuals of H rubicundula have such a pattern (fig. 1) No specmen of H. cachmbo has the lateral limuts of dorsum under the lower border of tympanum (pattern D2; fig. 2), but many individuals of H rubicundula from Goiás have such a pattern. No specimen of H cachumbo has a light pinkish to white stripe above a brown stripe on the edges of the tibia (pattern El; fig. 2), but many mdividuals of H rubicundula have such a pattern; also, no specimen of the former has a thin

Fig 6 Dorsal views of adult males. (A) Hy'a cachinho, holoty pe, MZUSP 21912, Cachm bo, Para, (B) H rubut attidila, MNRJ 17294, Lagoa Santa, Minas Gerais, (C) H rubroundula, MNRJ 17295, Goıânıa, Golás, (D) Hi cmalalıasazsi. MZUSP 49610, Posto Dhaudrum, Mato Grosso

Table 3 Standardized discrummant function coefficients for 18 morphometric characters of the combined samples of morphospecies RU, PRU, CBO and ANA, r, correlation coefficient (Pearson) of the original data with the scores restlited from the discriminant function analysis; ${ }^{\text {nt }}$, not signuficant; ${ }^{*} \mathrm{P}<0.05 ;{ }^{* *} \mathrm{P}<0.02,{ }^{* * *} \mathrm{P}<001$.

Characters	VC1	VC2	VC3	$r_{\text {(vel) }}$	$\mathrm{r}_{(\mathrm{NC2})}$	$r_{\text {(ves }}$
SVL	0.55	-0.41	-0.59	$0.73^{* * *}$	-0.24***	0.15**
HW	-0.85	0.22	-0.03	$0.9 * *$	-0.11 ${ }^{\text {ns }}$	$0.05^{\text {n5 }}$
HL	0.45	0.12	0.39	$0.78{ }^{* * *}$	$-0.07^{\text {ns }}$	$-0.04^{\text {ns }}$
ED	-0.15	0.43	-0.65	$055{ }^{\circ 00}$	$0.16^{* *}$	$0.37{ }^{\ldots *}$
UEW	-0.17	-0.68	0.11	$0.69{ }^{* * *}$	-0.45**	$0.07{ }^{\text {ns }}$
IOD	-0.34	-0.14	0.31	$0.69{ }^{\text {\%-7 }}$	$0.01{ }^{\text {ns }}$	$-0.09{ }^{\text {n5 }}$
END	-0.44	0.33	-0.05	$0.82^{\text {a** }}$	-0.01 ${ }^{\text {ns }}$	$-0.01^{\text {ns }}$
IND	-0.25	-0.21	0.42	$0.81{ }^{* *}$	$-0.08^{\text {ns }}$	-0.25**
THL	-0.53	0.81	-0.68	$0.81{ }^{* *}$	$-0.09^{\text {n }}$	$0.09{ }^{\text {ns }}$
TL	0.96	-0.12	1.83	0.7**	-0.16***	- $0.04{ }^{118}$
TD	0.16	-0.18	-0.23	$0.17^{* *}$	-0.03 ${ }^{\text {亘 }}$	$0.26{ }^{* *}$
NSD	0.3	0.34	0.08	$0.7{ }^{* *}$	$0.04{ }^{38}$	-0.14**
UAR	0.14	0.39	-0.18	$0.58{ }^{* *}$	$0.02^{\text {ns }}$	$0.06{ }^{\text {75 }}$
FAR	-0.12	-0.28	0.19	$0.67{ }^{* *}$	-0.2 ${ }^{\text {w }}$	$0^{\text {rs }}$
HAL	-0.18	033	0.07	$0.79{ }^{\text {an* }}$	-0.05 ${ }^{\text {ns }}$	$0.14^{* *}$
3FD	-0.37	0.25	0.15	$0.85{ }^{* * *}$	$-0.07^{\text {as }}$	$0.01{ }^{\text {n5 }}$
FL	-0.01	- 1.54	-0.98	$0.79{ }^{-\cdots 4}$	-0.28**	$0.12{ }^{*}$
4TD	0.03	0.15	-0.24	$0.82^{* * *}$	$-0.06{ }^{\text {ns }}$	013°

longitudnal central brown stripe composed of small dots, whereas many individuals of H anataliasiasi have such a pattern (pattern E4). The presence in H (achimbo of a broad penkish Stripe above a canthal brown stripe (patterns F2-F3; fig 2) distinguishes it from H. anatalusiast which presents a canthus well delımited by a thin white stripe above a brown stripe (pattern F1). A pointed snout (fig. 6A, 7A) difierentuates H cachmbo from H rubicumelula (fig. 6B-C, 7B-C). The head of the former is as long as wide, about 3.1 times into the snout-vent length, and this feature distinguishes it from H anatalasiust which has a bead longer than wide, its width being conlained about 36 times in the snout-vent length

Descripion. Descriptive statistics are provided in tab. 4 Head as long as wide, its width contaned about 3.1 tines in snout-vent length; mternanal distance greater than efe-nosinil distance $(n=15, t-2.76 . P=001)$ and smaller than eye diameter $(n-15, t=20.66, P=0)$: eye dameter greater than eye-nostral distance $(a-15,1-1968, P=0$), snout acuminate in

Table 4. Descriptive statustical tables of morphometnc characters for Hyla cachmba sp. nov (morphospecies CBO) and H. anataluastass (morphospecies ANA) $n=$ number of specimens for which data are avalable; $x=$ mean; $s=$ standard deviaton; $C V=$ coefficient of varianon.

Characters	Morphospectes CBO							Morphospecies ANA										
	Males						Femates$(n-1\}$	Males						Females (n-4)				
	n	π	man	maxt	s	CV		n	x	men	max	s	CY	x	min	\max	3	CV
SVL	15	2074	198	210	0.64	311	242	80	1885	16.0		151	8.03	1970	16.6	21.6	224	1139
HW	15	6.39	6.0	6.8	0.25	394	77	80	528	4.4	218	1.40	772	5.46	4.6	61	0.65	12.01
HL	15	649	62	68	0.21	323	77	80	568	47	61	0.40	7.05	607	54	68	0.59	9.84
ED	15	238	22	26	012	523	25	80	219	19	6.5	0.10	456	2.27	2.0	2.4	0.15	6.83
UEW	14	1.41	12	17	0.14	1012	1.7	77	1.22	0.9	2.4	016	13.21	1.15	1.0	1.2	009	7.93
10D	14	229	20	2.6	016	736	25	78	184	14	22	016	903	195	1.7	22	0.22	1165
FND	15	154	1.4	18	010	702	17	80	121	1.0	22	011	966	133	1.1	16	018	1411
ND	15	163	15	17	006	695	18	80	127	10	16	011	882	1.32	1.2	14	0.09	7.22
THL.	is	990	93	105	035	359	125	80	8.38	71	15	0.69	8.32	8.88	73	100	1.24	1401
TL.	13	1001	9.4	106	0.33	3.34	124	80	8.80	75	10.1	0.78	886	925	7.8	10.5	113	1231
TD	14	100	08	11	009	96	11	73	091	06	10.6	0.12	1344	087	0.6	10	0.16	1895
NSD	15	119	10	13	0.08	7.14	13	80	093	0.7	14	008	910	0.92	0.8	10	008	936
UAR	15	600	57	64	022	3.71	7.0	80	5.27	4.4	11	0.42	8.02	535	4.8	58	0.45	846
FAR	15	387	36	42	019	495	51	80	3.37	28	6.3	0.29	8.68	343	30	3.9	0.39	11.5
HAL	15	591	55	6.2	022	372	75	80	492	40	40	0.43	8.92	513	4.5	57	0.54	1070
3 FD	15	088	0.7	10	007	810	1.0	80	065	0.5	59	0.08	1283	0.71	05	0.8	011	16.58
FI	15	1410	131	15.1	0.56	399	189	80	12.31	10.3	08	1.12	909	13.43	110	15.1	181	1353
4ED	15	081	07	09	000	847	10	74	0.59	0.4	149	008	14.50	058	05	0.6	007	1276

dorsal outline and protruding or rounded in lateral outline; loreal region slightly oblique; eyes moderately prominent; tympanum distinct and nearly circular; a supratympance fold being sometumes present, partially covering tympanum; nostrils dorsolateral; internarial region flat; vomerine teeth often present in two patches between choanae: tongue cordform or ovold, vocal sac single and subgular.

Forearm more robust and shorter than upper arm ($n=15, t=28.09, P=0$); hands with a distinct palmar tubercle, subartucular tubercles rounded, distal tubercle of third finger bifid or rounded; distal tubercle of fourth finger always bifid; supernumerary tubercles present, third finger disk diameter greater than fourth loe disk ($n=15, t=5.72, P=0$); modal webbing formula, I 2 50-2 50 II 2-2.25 III 2.75-2.25 IV. Legs slender; femur and tibia with about the same stoutness and length ($n=15, t=087 . P=0.39$); sum of thigh and tibia lengths smalier than snout-vent length ($n=15, t=3.42, P=0$). Foot with robust toes; subarticular tubercles always rounded, supernumerary tubercles not distuct; prehallux distinct; plantar tuberele distinct; modal webbing formula, I 2:-2.25 II 1.25-2 25 III 1.25-2.75 IV 3:1.75 V.

Color in preservative. - Dorsum reddish, immaculate, with occasional dark brown dots; mid-dorsal pin stripe absent; canthus rostralis detimited by a subcanthal brown stripe (patterns F2-F3; fig. 2); lorus with variable melanzation; a slender lateral brown stripe sometimes present on flanks from posterior corner of orbit to near gronn, sometimes bordered by a light pinkish stripe (patterns C2-C3; fig. 2), thigh light brown, immaculate; a brown stripe sometimes present on anterior and posterior edges of upper surface of tibia 1 addition to dorsal random dots (patterns E2-E3: fig. 2); ventral surfaces immaculate buff Color in hife unknown.

Measurements of holotype. - SVL 21.3; HW 6.8, HL 6.8; ED 2.4; UEW 14; IOD 2.6; END 17 ; IND 1.5; THL 10.5; TL 10.6, TD 10 ; NSD 1.1; UAR 6.4; FAR 4.2, HAL $62,3 F D$ 0.9; FL 15.1; 4 TD 0.8

Etymology: - The specific name, a noun in apposition, refers to the type-locality. Cachimbo. Geographic distribution. - Known only from the type-locality (fig. 4). This area is characterized as an "ecological stress area" (ANonymous, 1991) or a transitional area between the Cerrado Domain and the Amazon Equatorial Domain ($A_{B}^{\prime} S_{A B r R}, 1977$).

Hyla rubicundula Reinhardt \& Lütken, 1862
(fig. 6B-C, 7B-C, 8B-C)
Hyla rubscundula Reinhardt \& Lütken, 1862; BOKERMANN, 1968, 1972.
Spectmens examined BRAZIL. Bahla-Barrelras (MNRJ 0934, 0946, 0935-0940, 0933, 6145-6154), Jupaguá (MNRJ 0943-0944). Minas Gerals: Alfenas (MNRJ 17126-17128, 17129-17133, 17134); Andrequicé (MNRJ 17110); Arinos (MZUSP 64500-64504), Barào de Cocals (MNRJ 17210-17212), Belo Horzonte (MNRJ 17214-17220, MZUSP 519, 34647): Buritis (MZUSP 64449-64452, 64455-64458, 64460-64464), Burtizeiro (MNRJ 171)1-17112, 17113-17116); Esmeraldas (ZUEC 4023); Jabotsatubas (MZUSP 57712-57713), Januarta (MNRJ 0942), Lagoa Formosa (MNRJ 17123); Lagoa Santa (topotypes, MNRJ 17117.

Fig 7 Dorsal and lateral vews of the heads of adult males. (A) Hvia cachmbo, holotype, MZUSP 21912, Cachumbo, Para, (B) H rubcupdula, topotype, norphospecies RU, MNRJ 17294, Lagoa Santa, Mınas Geras; (C) H rubucomdula, morphospecies PRU, MNRJ 17295 , Gôănıa, Golas, (D) H anataliastasi, MZUSP 49610, Posto Dtauarum, Mato Grosso

17121, 17124-17125, 3081, 13287, 0947, 6155-6177; MZUSP 34012-34023; ZUEC 4150), Manga (MNRJ 0941); Pimenta (MNRJ 17319-17321), Pirapora (MNRJ 0928-0932. 0945. 0923-0927), Santa Luzıa (MNRJ 17322-17323); Três Marıas (MNRJ 17101-17109), Uberlândea (MNRJ 17305-17308); Unaí (MZUSP 64398-64402, 64386, 64389-64392, 64396; MNRJ 17135), Vespasıano (MNRJ 17221-17223; MZUSP 12691-12693) Golas: Aragarças (MZUSP 20983); Cavalcante (MZUSP 66543, 66570, 66574, 66576), Cristalina (MZUSP 64522), Goiânua (MNRJ 17136-17155, 17300), Iaciara (MZUSP 66527-66528), Monte Alegre de Gotás (MZUSP 66403-66407, 66450, 66456); Nova Roma (MZUSP 66358-66360), Porangatu (MNRJ 17167-17168), Santa Rita do Araguaıa (MZUSP 66650-66654), São Domingos (MZUSP 66597-66601, 66602, 66603); escarpa da Serra Dourada (ZUEC 7505) Plauí: Uruçui (MNRJ 17224).

Syntypes. NMW 16511, ZMUC 1440-1441, Lagoa Santa (about $19^{\circ} 37^{\prime}$ S, $43^{\circ} 53^{\prime}$ W), Minas Gerais, Brazil. 760 m (Bokermann, 1968; Frosi, 1985), specimens not examined by us,

Diagnosis. - Spectes characterized by the follow ing combination of tratts: (1) small suze (SVL males $18.0-234 \mathrm{~mm}$, females 21 (6-251 mm); (2) in preservative, dorsum with two divergent brown stripes from anterior section of head to sacral region, and two sacral stripes of same color and orientation extending to cloacal region (pattern A1; fig. 1), (3) a thin brown dorsolateral stripe bordered by a than light stripe from posterior corner of orbst to near groin (pattern C1. fig. 2); and (4) head as long as wide, 1ts width conldined about 33 times in snout-vent length (fig. 6B-C, $7 \mathrm{~B}-\mathrm{C}$)

The presence of dorsal brown stripes (patterns A1-A2, A4-A6 and A8-A10; fig. 1) in many individuals of Hyla rubicurdula differentiate them from H. cachimbo which never has such a pattern. The presence in many specimens of the former of two divergent dorsal brown strupes, from the anterior section of the head to nearly the middle of the body, together with two sacral brown stripes (patterns A1 and A4; fig 1), with or without additional brown stripes (patterns A5 and A8-A10), distinguish them from H. anataliasiasi, which do not have such patterns No specimen of H rubicundula has the two anterior divergent dorsal brown stripes fused to the sacral ones (pattern A11), whereas many individuals of H. anataliasiasi have such a pattern. A mid-dorsal pin stripe (patterns B1-B2; fig, 1) in many specimens of H. rubicumdulo distingush them from H. cachambo, in which it is often absent. A broad and irregular dorsolateral siripe, with or without an upper white to pinkısh stripe (patterns C3-C4, fig. 2) in many specımens of H. rubicundula distingushes them from H anataliasiasi, which never has such a pattern The lateral limits of the dorsal coloration in many spectmens of H. rubicundula are under the lower border of the tympanum (pattern D2: fig 2), whereas H. cachmbo and H. anataliastasi often have this limit above the tympanum (pattern D1), a pattern common to the three species. The presence of a thin white to pinkish stripe on the edges of the tibia above a thin brown stripe (pattern E1; fig 2) in many specimens of \boldsymbol{H}. rubrcurdula distınguishes them from H, cachimbo, which never has such a pattern; also, no specimen of H. rubicundula has a thin longitudinal central brown stripe on the upper surface of tibia composed of thin dots (pattern E4), whereas many individuals of H. anataliasiasi have such a pattern. The presence in H. rubrcumdula of a thin pinkish to white canthal stripe above a brown loreal stripe (pattern F1; fig, 2) distingushes it from H cachmbo which lacks such a pattern; also, the presence in many specimens of the former of a broad canthal pinkish stripe above a brown loreal stripe (patterns F2-F3) distinguishes them from H, anatalasiasi, wheh never has such a pattern. Hyla rubicurdula has a truncate or rounded snout (fig. $6 \mathrm{~B}-\mathrm{C}, 7 \mathrm{~B}-\mathrm{C}$), whereas H. cachumbo has an acuminate snout (fig. 6A, 7A), also, the former has a head as long as wade, its width being contained about 3.3 tumes in the snout-vent length, and H anatahastast has a head longer than wade, its width beng contaned about 36 tumes in the snout-vent length.

Description The following description is based on topotypes and other geographic samples from Minas Geras and Bahia (morphospecjes RU). The morphotype located in central Brazil (morphospecies PRU) is characterized in the geographic variation section.

Descriptive statistics are prowded in tab. 5 Head as long as wide ($n-140,1-1.65, P$ 009), 1ts width contaned about 3.3 times in snout-vent length; internarial distance greater than eye-nostry distance ($n-139, t=4.61, P=0$) and much smaller than eye dameter ($n=$ $139, t=50.29, P=0)$; eye dameter greater than eye nostril distance $(n=139,1=5366, P=$ 0): canthus rostralis distinct, slightly rounded; lorus slightly oblique, sometmes perpendicular to canthus rostralis; eyes slghtly to very prominent, tympanum distinct and nearly crreular; supratympanic fold poorly developed; nostrils dorsolaterdl, slightly protuberant. directed laterally or slightly forward, internanal region furrowed or not, vomerme teeth in wo patches between choanae, with irtegular shape and position, tongue cordform or rounded, vocal sac single and subgular.

Forcarm more robust and shorter than upper arm $(n-139, t=40.64, P-0)$, hands with a disinct palmar tubercle, subarticuiar tubercles rounded, distal tubercle of fourth finger bifid, that of third finger bifid of rounded, supernumerary tubercles present, prepollex

Table 5 - Descriptive statistical tables of morphometric characters for Hyla rubicurdula (morphospecies RU and PRU). $n=$ number of specimens for whach data are available, $x=$ mean; $s=$ standard deviation; $C V=$ cocfficient of varastion

Characters	Morphospecses RU											Morphospecies PRU										
	Mates						Fernales ($14=4$)					Males						Females $(n=6)$				
	n	x	m\%	\max	5	CV	7	M:	max	5	Cl	\%	x	mm	max	s	CV	x	min	max	s	CV
SV1	140	2127	180	234	097	458	2375	216	25.1	152	6.43	47	2161	181	238	1.09	507	2393	22.2	254	143	598
HW	140	631	54	70	028	4.54	657	6.2	6.9	033	535	47	6.49	56	72	031	486	700	65	42	0.26	380
HL	140	6.37	55	71	0.27	436	6.81	65	71	0.33	488	47	6.45	57	70	026	4.15	705	65	74	630	4.37
ED	179	233	20	27	014	6.36	251	23	26	0.14	594	47	2.45	21	28	014	585	258	23	2.7	0.16	6.20
UEW	136	156	12	20	015	966	157	1.5	1.7	011	7.55	46	1.56	1.0	18	014	9.35	170	14	19	0.16	951
100	129	216	17	26	0.19	912	2.36	2.0	2.6	027	1151	46	2.18	1.8	25	014	682	2.27	22	24	009	434
END	139	148	11	18	010	685	158	15	17	0.08	537	47	153	13	17	0.10	670	160	15	17	009	570
1ND	139	155	11	18	0.10	685	1.58	15	17	0.11	6.98	47	154	13	18	009	6.08	170	15	18	0.08	5.26
THL	137	981	80	121	056	577	10.61	94	111	0.78	737	47	10.08	85	113	060	6.48	11.15	10.3	118	051	4.66
IL.	140	999	83	11)	048	488	10.76	97	11.3	0.73	8.85	47	10.05	8.3	11.1	0.58	585	11.04	10,2	115	059	536
ID	138	097	06	14	0.11	1217	± 12	10	12	0.18	1326	44	103	08	12	0.08	824	127	0.9	18	0.31	2501
NSD	139	111	09	18	0.11	1041	1.15	09	13	0.18	16.26	47	113	09	12	008	725	121	11	13	0.07	512
LAR	139	583	44	72	0.47	807	6.28	60	6.5	0.22	357	47	599	51	67	0.40	6.42	6.58	6.0	6.9	0.33	5.12
IAR	139	390	31	49	030	737	431	38	46	035	816	47	392	34	45	025	6.42	4.14	37	46	0,30	7.45
HAI	139	584	44	70	0.43	738	628	60	64	019	307	47	6.11	53	7.4	039	653	6.60	60	69	034	522
3 FD	139	086	06	11	0.07	927	096	08	10	008	887	46	089	0.6	1.0	008	902	0.97	0.8	11	0.09	9.59
FI	139	1461	117	163	076	526	1572	143	165	096	614	47	1489	122	174	14.89	100	16.20	15.0	174	101	6.26
4 JD	139	080	05	10	009	1168	087	08	0.9	006	737	47	0.84	06	10	009	1157	0.88	07	1.0	010	11.69

Fig 8 Hands and feet of adult males. (A) H_{y} la cachambo, holotype, MZUSP 21912, Cachumbo, Para, (B) H rubrcuadula, topotype morphospeces RU, MNRJ 17294 , Lagoa Santa, Minas Gerdis: (C) H rubrcturehlda, morphospecies PRU, MNRJ 17295, Goânaa, Gotás, (D) H anatahastass, MZUSP 49610, Posto Dtauarum, Mato Grosso.
distunct, thrd finger disk drameter greater than fourth toe disk ($n=139, t-572, P=0$) : modal webbing formula, I 2.75-2.75 II 2-3 25 III 3-2.25 IV. Legs slender; fermur and tuba with about the same stoutness; femur kngth shorter than tibia length ($n=137, t-288, \boldsymbol{P}=0$); sum of femur and tibia lengths smaller than snout-vent length $n=137, t-12.20 . P=0$): toes not robust: subarticular tubercles rounded; supernumerary tubercles variable in shape and number, prehallux distinct, modal webbing formula, I $2-225$ II $1^{+}-225 \mathrm{III} 1^{+}-225 \mathrm{IV} 225-1^{+} \mathrm{V}$. Color. In life the analysis of four topotypic specimens from Lagoa Santa (Minas Gerals) revealed that in the same specimen the dorsal surfaces vary from dark green to dark brown, with an intermed ate yellow phase, dots and dark brown stripes are not visble on the dorsum; a dark brown stripe, bordered by a whte stripe. is visible on the flanks and canthus rostralis, thigh light brown and immaculate, vocal sac yellowish, belly white; finger and toe disks reddish

Fig 9. Sonogram and oscillogram of advertisement call of Hy_{3} la rubururduda (morphospectes PRU) from Silvànta, Golas, Calls are given sporadically. The intervals between the notes are not natural

In preservative, dorsum reddsh, with occasional dark brown stripes and dots (patterns A1-A10; fig 1): a mid-dorsal pin-stripe sometimes present on dorsum (patterns B1-B2; fig. 1); canthus rostralis delımited by a dark subcanthal brown stripe bordered above by a light pınk to white stripe (pattern F1; fig 2); lorus with a variable degree of melanzation; dorsolateral regoon delimited by a dark brown stripe bordered above or not by a light pink to whte stripe from posterior corner of orbit to near groin (patterns C1-C2 and C5; fig. 2), both often above tympanum (pattern Dl; fig. 2); thigh light brown, immaculate; a brown stripe sometimes present on anterior and posterior edges of tuba m additoon to random dots (patterns $\mathrm{E} 1-\mathrm{E} 3$; fig. 2); ventral surfaces immaculate buff.

Geographic varation Samples from central Brazil (morphospecies PRU) have the following differences when compared to samples from Minas Gerals and Bahia (morphospecies RU). dorsal head shape pattern with pattern A7 (fig. 3, 6C, 7A); internarul distance and eye-nostrif distance nearly equal $(n=47,1=026, P=0.79)$: lorus slightly to strongly concave, ty mpanum covered or not by a supratympanic fold, distal tubercle of fourth finger bifid or not, femur and ubia the same length ($n=47, t=0.22, P=0.82$): dorsolateral stripes pattern corresponding to patterns C3-C4 (fig 2); tateral limits of dorsal pattern corresponding to pattern D2 (fig. 2). The other variations are of a matter of degree (tab. 1) and descriptive statistics are presented in tab. 5

Vocealizution The advertsement calls sluded are from one specmen from Silvàma, Goiás (morphospecies PRU: fig 9) Each note composed of three pulses had a duration of nearly 003 s , and each note was composed of four pulses about 0.04 s Broadcast frequencies range between 3.5 and 48 kHz Air temperature has $215^{\circ} \mathrm{C}$. Cardoso \& Vill Lard (1985) gave a
detailed description of the call of Hyla rublcundula from Lagoa Santa, the type-locality of morphospecies RU. Comparisons between the two vocalizations reveal that they are very similar and that both belong to H. rubicundula.

Geographic distribution. Hyla rubrcundula occurs in Minas Gerais, Goıás, Bahaa and Pıaú (fig. 4), manly in the Cerrado Domain (Ab* Saber, 1977), and never crosses tropical rain forests

Hyla anataltasiasi Bokermann, 1972
(fig. 6D, 7D, 8D)

Specimens exammed. - BRAZIL. Mato Grosso: Posto Diawarum (MZUSP 49588-49617), Posto Leonardo (MZUSP 49339-49393).

Holotype. - WCAB 45272, adult mate, collected at Belém-Brasília highroad, 80 km before Paraiso do Norte, Brejınho de Nazaré (about $11^{\circ} 00^{\prime} \mathrm{S}, 48^{\circ} 33^{\prime} \mathrm{W}$), Goı́s [Tocantıns], Brazil, 247 m, 17 January 1970, by C. A Bokermann, Ladislau A. Deutsch and Milton S. Carollo.

Puratypes. Four adult males: WCAB 45273, collected with the holotype; WCAB 4525645258 , collected at Paranā (about $12^{\circ} 36^{\circ} \mathrm{S}, 47^{\circ} 52^{\prime} \mathrm{W}$), Goiás [Tocantıns], Brazul, 274 m , December 1969, by Anatalias J. Rodrictues.

Diagnosis. - Species characterized by the following combination of traits (1) small size (SVL: males $16.0-21.8 \mathrm{~mm}$; females $16.6-21.6 \mathrm{~mm}$); (2) dorsum with nearly parallel dark brown stripes, the two anterior ones very near each other, joned with the two sacral ones (pattern A11; fig. 1); and (3) head longer than wide, its width being contained about 3.6 times in snout-vent length (fig 6D, 7D).

The presence of two anterior dorsal brown stripes fused to the sacral ones in some specimens of H anatahasiast (pattern A11. fig. I) distingushes them from H, rubicundula and H cachimbo, which lack such a pattern; also, the absence in the former of two divergent dorsal brown stripes, from the anterior section of head to nearly half of the dorsum, barely separated from two sacral brown stripes (patterns Al and A4), with or without additional dorsolateral strupes (patterns A5 and A8-A10), distinguishes st from H rubtoundulc, which has many individuals with such patterns. A mid-dorsal pin stripe (patterns BI and B6, fig. 1) in many specimens of H anatahassasi distungushes them from H culumbo in which stripes are absent A well-marked dark brown to black dorsolateral stripe under a thin white strupe (pattern C7; fig 2) in some specimens of H chataflasios distingushes them from H rubicundula and H cachumbo which never possess such a pattern; also, the abvence in the former of a broad and irregular brown dorsolateral stripe, with or without an upper white to pinkısh strıpe (patterns C3-C4), disingurshes il from many individuals of H rubriandula with such patterns. No specimen of H eachmabo has the lateral limuts of the dorsat coloration below the lower border of the tympanum (pattern D2; fig, 2), but many individuals of H rubicundula from Goias have such a pattern. The presence in some specimens of H. whatahasutver of a thun white to pukish stripe on the edges of tibra, above a thm brown strupe (pattern

E1; fig. 2), distunguishes them from H. cachimbo, which never has such a pattern; also, the presence in the former of a thin longitudinal central brown stripe on the upper surface of tibia, composed of small dots (pattern E4), distinguishes it from H. rubicundula and H cachimbo which never possess such a pattern. No specimen of H anatahastasi has a broad canthal pinkish stripe above a brown loreal strıpe (patterns F2-F3; fig. 2), but many undiniduals of H. rubicumdula and H. cachumbo have such a pattern. The snout in H. anatahastasi is acuminate in many individuals (fig 6D, 7D), but it is rounded or truncate in H rubicundula (figg 6B-C, 7B-C). In the former the head is longer than wide, its width being contained about 3.6 times in snout-vent length, whereas in H rubicurduld and H. cachimbo the head is as long as wide, its width being contaned, respectively, about 3.3 and 3.1 times in snout-vent length

Description. - Descriptive statistics are provided in tab. 4. Head longer than wide ($n=80, t=$ $6.23, P=0$), its width being contained about 3.6 times in snout-vent length; internarial distance greater than eye-nostril distance ($n=80, t=3.09, P-0$) and much smaller than eye diameter $(n=80, t=54.51, P=0)$; eye dameter greater than eye-nostril distance ($n=80, t=$ 56.35. $P=0$); snout truncate, rounded or acumunate in dorsal outline, and slightly protruding. truncate or rounded in lateral outline', canthus rostralis distinct. especially when bordered by loreal and canthal stripes, rounded or straight; lorus slightly concave; eyes moderately prominent, tympanum distinct, nearly circular; a supratympame fold sometimes covering upper surface of tympanum; nostrils dorsolateral, slightly protuberant, directed laterally or slightly anteriorly; internarial region furrowed, vomerine teeth in two patches with irregular shapes and posittons between choanae; tongue cordiform or rounded; vocal sac single, subgular, not well developed.

Forearm shorter and more robust than upper arm $(n-80 . t=33.04, P=0)$, hands with a distinct palmar tubercle: subarticular tubercles distinct, rounded: distal tubercle of third and fourth fingers bifid or not; supernumerary tubercles present, palmar tubercle distinct; prepollex distmet, third finger disk diameter greater than fourth toe disk ($n=74, t-4.92, P$ $=0)$: modal webbing formula, 12.50-2.75 II 2.25-3.25 III 2.75-2.25 IV. Legs slender; femur and tibua with the same stoutness, femur longer than tibia $(n=80, t=3.60, P=0)$; sum of femur and tibia lengths smaller than snout-vent length ($n=80, t-8.57, P=0$), foot with rounded subarticular tubercles, supernumerary tubercles not very distunct; prehallux distinct, plantar tubercle present or not, modal webbing formula, I 1.75-2.25 II 1+2.25 III 1.25-2 25 IV 3-1 ${ }^{+}$ V.

Culor In life, dorsal surfaces green (Boklrmann, 1972). In preservatire, dorsum reddish with occasional dark brown stripes and dots (patterns A2. A6 and A11: fig. 1): a mid-dorsal pin-stripe present or not (patterns B1-B2, fig 2); canthus rostralis delimited, or not, by a subcanthal dark brown stripe bordered above by a light pink to white stripe (patterns F1-F3, fig 2), lorus with a variable degree of melanization, a lateral brown siripe sometımes present on flanks from posterior corner of orbit to near groin, sometimes bordered by a light pinkish stripe (patterns C1-C2, C5 and C7; fig 2), both often above tympanum (pattern B1; fig. 2): thigh lighe brown with numerous widespread hight brown dots; a brown stripe sometimes present on anterior and posterior edges of upper surface of tibia, bordered by a light purk to white stripe, in a addition to dorsal random dots (patterns El and E3; fig 2), or with a thin longutudimal central stripe composed of small dots (pattern E4), ventral surfaces mmaculate bulf

Geogruphic dustrıbutıon. Recorded from Tocantıns (Brejınho do Nazaré and Paranā; Bokermann, 1972) and northern Mato Grosso (Posto Diauarum and Posto Leonardo; fig. 4), both in the Cerrado Domain (AB' SABER, 1977) at elevations between 247 and 274 m

Résumé

Le groupe d"espèces de Hyla rubıcwidula, composé de H rubicundula Reinhardi \& Lütken. 1862 et H. anataliasiasi Bokermann, 1972, est subdıvisé en quatre morpho-espèces. La variation intra- et inter-populationnelle de la morphologie externe de chaque morphoespèce est analysée. Hy la rubicundula renferme trois des quatre morpho-espèces. Celle située au nord de sa répartition est décrite comme une espèce nouvelle, caractérisée principalement par un dos ımmaculéet un museau pointu. Une redescription est présentée pour les espèces H rubicundula et H. anatahasiasi.

Acknowledgements

We thank Mauro Cavalcanti for and in the slatistical procedures, Ronaid Altig, W Ronald Hr yer. Ronaldo Fernandes, José P. Pombat. Jr and Hussam Zahfr for their heipful comments on the manuscript, Paulo R Nascimento for the drawings, Rogeno P. Bastos for the recording of Hyla ruburumdula from Golás, and Celıo F. B. Haddad for the broacoustic analysis. Adào J Carboso and Paulo E. Vanzoinnt permitted study of material under their care. For financial support, we are grateful to the CAPES and CNPq, and FAPESP (Proc 94/5634-5) for the ald to the Bloacoustic Laboratory of UNESP - Rio Clato, SP

Literature cited

Anonvmous [Fundação Instıtuto Brasilerro de Geografia e Estaistica]. 1989. Grografía do Bravt Regido Centro-Oeste. Rio de Janeiro, IBGE, 1: 1-267.

- 1991. - Geografia do Brasili Regtāo Norte Rıo de Janerro, 1BGE, 3. 1-307.

Ab' Saber. A. N.. 1977 Os dominos morfoclımáticos mà América do Sul Primeraa aproxumação Geomorfologia, 52. 1-23.
Boklrmann, M. C A. 1965 Trés novos batraquios da reglāo centtal de Mato Grosso. Brashl (Amphibia, Salientaa). Rev. brastl BroL, 25 (3). 257-264
--.- 1968 - Nolas sobre aiguns anfibies descritos por Reanhardt \& Lüıken ern 1862 (Amphibaa) Rev: brasil Bioh, 28 (3): 327-329.
…- 1972 Una nova especie de Hfla de Golds. Brastl (Anura, Hylidac) Rea brast. Buot, 32 (4) 593.594

Cariooso, A J \& Viclliard, J M E. 1985 Caracterizaçảo bio-acústicd da populacio topotiprea de Hika rubicunduha (Amplubla, Anurat Rui hrasil Lool. Sado Paslo. 2 (7) 423-426
Diell man, W E. 1970 - The hylid frogs of Middle America Mon Mies nar Hist Um Kamsus (1) 1-753
Frost. D R, led), 1985 - Amphichan spertes of the world Laurence. Allen Press \& Ass. Syst CoIl [1-19] $+\mathrm{i}-\mathrm{w}+1.732$
Halbab, C F B, Andrade, G. V \& Carlooso, A J. 1988 Anfiblos druros no Parque Naconal da Serra da Canastra, Estado de Minas Gerais. Brasil forestal, 649.20

HeYer, W R., 1984. - Vantiton, systematics, and zoogeography of Eletherodactylus guentheri and closely related species (Amphibia, Anura, Leptodactylidae) Smuhsoman Conirib. Zool, 402 1-42
Hfyfr, W R , Rand, A S. Cruz, C. A G., Peixoto, O. L \& Nelson, C. E, 1990 - Frogs of Boracéla Art. Zool., Săo Paulo, 31-231-410.
Jim, J., 1980. Aspectos ecologgros dos anfibras regrstrados na região de Boturaru, São Paulo | Amphibia, Anuraj, Doctoral Dissertation, São Paulo, Instituio de Bıologia, Universidade de São Paulo' 1-332.
Lutz. A., 1925. - Batractens du Brésil. C. y Soc. BroL, Parıs, 93: 137-139
Marcus, L. F., 1990 Traditional morphometrics / a^{\prime} F J Rohlf \& F. L Bookstein (ed.), Proceedings of the Michrgan morphometrics workshop, The Unversity of Michigan Museum of Zoology, Spectel Publ, 2: 77-122.
Prance, G. T., 1996 Islands in Amazonia Phil. Trans r Soc. Lond, 351• 823-833
Reinhardt, J. \& Lütken, C F., 1862. - Bidrag til kundskab om Brasliens Padder og Krybdyr Vid. Medd. Naturh. Foren Kjobenhavn, 3: 143-242.
REIs, S. F; Pissoa, L. M. \& Strauss, R, E., 1990 Applicalion of size-free canonical discrmmant analysis to studies of geographie differentiation. Ret. brastl. Genel, 13: 509-520
Savage, J. M. \& Heyer, W R., 1967. Variation and distribution in the tree-frog gemus Phyllomedusa in Costa Rica, Central America, Beur neotrop. Fauna, 5: 111-131.
Sokal, R R \& Rohlf, F, J, 1981. Bimeiry 2nded. New York, Freeman \& Co.: 1-859.
Vanzolint, P. E., 1970. Zoalogia sistemátrca, gengrafin e a ongem das espécies Universidade de São Paulo, Instituto de Geografia, Teses e Monografias: 1-56.

Appendix 1

Critena for combination of patterns in analyses of interpopulation variation of morphospecies RU and PRU

Patterns were joined by similarity and geographic distribution
General dorsal patterns A1 and A4 are typical from topotypic samples for Hyla rubucundula, Compared to patterns A1 and A4, A2, A3, A6 and A7 are incomplete, vestigial or absent, whereas $\mathrm{A} 5, \mathrm{~A} 8, \mathrm{~A} 9$ and A 10 have additional melanization.
Mul-dorsal pin stripe patterns. - B1 and B2, presence, B3, absence.
Dorsoluteral stripes, - C1 and C2, typical from Lagoa Santa. Mnas Gerais: C3 and C4, typical from Gotas: C5 and C6, vestigial or absent; C7, only for H anatahustasa.
Dorsal head shape patterns. - G1-G3, typical from Lagoa Santa, Mmas Geras; G4-G5, typical from Barreiras, Bahıa, G6-G7, typical from central Mmas Gerais.

Corresponding editors: Ronald G. Altig \& Alam Dubors

